New paper published on gene editing technique in hematopoietic stem cells

30 June 2020
Image: National Cancer Institute

The San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Genespire have published data highlighting progress in the development of an improved targeted gene replacement technology in human hematopoietic stem cells (HSCs) in Nature Biotechnology.

The paper, entitled Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking, outlines technology developed by Pr. Luigi Naldini and his team at SR-Tiget, which is included in the strategic alliance with Genespire. It shows increased homology directed recombination (HDR) efficiency in HSCs by forcing cell-cycle progression and transiently upregulating components of the HDR machinery. The findings are validated by clonal tracking of the edited HSCs in experimental transplantation models, which shows improved polyclonal engraftment by long-term repopulating HSCs.

This approach can be applied to genetic diseases originating in the hematopoietic lineage, including primary immune deficiencies (PIDs), a key area of focus for Genespire. Genespire will continue to work with SR-Tiget and apply this technology to its future pipeline of gene therapies.

Julia Berretta, Chief Executive Officer of Genespire, commented: “The focus of Genespire’s alliance with SR-Tiget is to research and develop novel gene therapies, addressing severe diseases with high unmet medical need. We are pleased with the publication of these data in Nature Biotechnology, which provide valuable insights into this pioneering technology developed by SR-Tiget, and we look forward to our future work with them to translate cutting edge science into transformational therapies.”

Professor Luigi Naldini, Director of SR-Tiget and scientific co-founder of Genespire, said: “Our findings elucidate and overcome two main biological barriers to efficient HDR-mediated gene editing in HSCs, and show by clonal tracking that our enhanced editing protocol preserves their multilineage and self-renewal capacity long term after serial transplant. We look forward to our future work with Genespire to explore its potential in primary immunodeficiencies.”

The full publication details are below and can be accessed online.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Join FREE today and become a member
of Drug Discovery World

Membership includes:

  • Full access to the website including free and gated premium content in news, articles, business, regulatory, cancer research, intelligence and more.
  • Unlimited App access: current and archived digital issues of DDW magazine with search functionality, special in App only content and links to the latest industry news and information.
  • Weekly e-newsletter, a round-up of the most interesting and pertinent industry news and developments.
  • Whitepapers, eBooks and information from trusted third parties.
Join For Free