Synthetic cells could help study drug activity in living tissues

Scientists have created new artificial tissues that mimic some of the complex characteristics and abilities of living tissues, paving the way towards unprecedented advances in medicine, soft-robotics, and micro-engineering. The University of Bristol-led breakthrough, published in Advanced Materials, has reported the first way to produce centimetre-sized artificial tissues of any shape and with complex internal structures.

A team, led by Dr Pierangelo Gobbo from the university’s School of Chemistry, developed the new technique and used it to assemble millions of sticky synthetic cells, called “protocells”, into artificial tissues capable of communicating with each other as well as with their external environment. Previously, protocells have been worked with individually, but the scientists found that when the cells were combined in a group to form protocellular materials they interacted together and showed advanced capabilities.

The innovative method, called the “floating mould technique”, allowed the team to create free-standing protocellular materials of any size and shape. It also facilitated the assembly of patterned and layered protocellular materials through the careful arrangement of different types of protocells.

The team then specifically programmed the behaviour of the protocells comprising the material so that when waves of chemicals were sent into the environment, the protocells responded together, and it became possible to extract important physical and chemical information from their collective reaction. This could, for instance, lead to a new method to study how a drug moves and distributes inside living tissues.

The team indicate in future it could be possible to graft protocellular materials onto organs to provide targeted therapies, or to use these artificial tissues as organoids to closely replicate in vivo environments for drug screenings and reducing animal testing. The tissues could also be used to assemble the next generation of soft robots fuelled by chemicals available in the environment.

Lead author Dr Agostino Galanti said: “Our protocellular materials are robust, stable in water and are also capable of combining the special attributes of individual protocells with the new enhanced capabilities they take on when combined together in group formations.”

Dr Pierangelo Gobbo, Vice-Chancellor’s Fellow at the University of Bristol and Principal Investigator of the project, added: “The controlled assembly of protocells into centimetre-sized protocellular materials endowed with emerging bio-sensing capabilities is unprecedented and represents an important milestone towards the construction of fully autonomous and adaptive artificial tissues. Our next goal is to advance the biochemical capabilities and levels of autonomy of our protocellular materials to target important applications in tissue engineering, personalised therapy, pharmacokinetics, micro-bioreactor technologies, and soft robotics.”

Related Articles

Join FREE today and become a member
of Drug Discovery World

Membership includes:

  • Full access to the website including free and gated premium content in news, articles, business, regulatory, cancer research, intelligence and more.
  • Unlimited App access: current and archived digital issues of DDW magazine with search functionality, special in App only content and links to the latest industry news and information.
  • Weekly e-newsletter, a round-up of the most interesting and pertinent industry news and developments.
  • Whitepapers, eBooks and information from trusted third parties.
Join For Free