Revealed: How Covid-19 variants stay ahead of immune defences


Recent SARS-CoV-2 variants such as BA.4 and BA.5 developed abilities missing from the first Omicron variants that allowed them to overcome humans’ innate immunity, according to research from University College London (UCL).

The study examined viral evolution in eight Omicron variants to better understand how the virus has reacted since the introduction of vaccinations.

It found that earlier Omicron variants such as BA.1 lost mechanisms to overcome innate immunity but that later variants regained this ability, suggesting a common evolutionary strategy that has implications for pathogen surveillance.

Since the beginning of the Covid-19 pandemic, new variants of concern emerged independently from the first wave SARS-CoV-2 virus. Alpha, Delta and then Omicron in turn became the dominant variants in circulation.

Previous work showed that Alpha and Delta evolved to overcome human innate immunity by jamming the cellular signalling in the airways that triggered the antiviral immune response. This buys the virus time to establish itself in the body and overwhelm the second line of defence, the adaptive immunity developed as a result of prior infection or vaccination. If it is successful, viral particles will enter cells and replicate, causing illness in the host.

Unlike Alpha and Delta, the evolution of SARS-CoV-2 Omicron was driven by the pre-existing immunity in the global population as a result of vaccination and prior infection. This adaptive immunity creates antibodies that recognise features on the virus’ spike protein, and protects cells from infection in a process called neutralisation.

Treatments are available. This month, biotech company ExeVir Bio published new data demonstrating that its antibodies are effective in neutralising the currently circulating Omicron variants.

Variants relearned how to overcome immunity

In this study, researchers at UCL and the University of Glasgow used cell models to observe how eight different SARS-CoV-2 Omicron sub-variants interacted with their human host.

They found that the earliest Omicron variants, BA.1 and BA.2, were less able to overcome human innate immunity than Alpha or Delta. More recent Omicron variants, such as BA.5 and XBB, have relearned how to overcome human innate immunity and have done so in the same way as Alpha to Delta.

Dr Ann-Kathrin Reuschl, first author of the study from UCL Division of Infection & Immunity, said: “We were surprised to find that early Omicron subvariants were relatively bad at evading innate immunity compared to Alpha and Delta. This seemed like a backwards step in SARS-CoV-2 evolution and may explain reports of reduced disease severity when these variants were dominant.”

To overcome innate immunity these later Omicron variants produce greater quantities of certain viral proteins, such as nucleocapsid and Orf6, that help to jam the cellular signalling pathways that triggers our antiviral response.

Professor Greg Towers, a senior author of the study from UCL Division of Infection & Immunity, said: “This study helps us understand how a pandemic coronavirus adapts to its new human host and suggests how the virus will evolve in the future, fine tuning immune escape by changing its spike and protein levels to maximise human-to-human transmission. The success of BA.1 and BA.2 without the same capacity to overcome innate immunity suggests that avoiding innate immunity may be less important than avoiding neutralising antibodies for SARS-CoV-2 human-to-human transmission, but that it remains an important part of the virus’ strategy.”

The findings help to explain why SARS-CoV-2 remains so capable of infecting people despite existing immunity from vaccines and prior infection.

Related Articles

Join FREE today and become a member
of Drug Discovery World

Membership includes:

  • Full access to the website including free and gated premium content in news, articles, business, regulatory, cancer research, intelligence and more.
  • Unlimited App access: current and archived digital issues of DDW magazine with search functionality, special in App only content and links to the latest industry news and information.
  • Weekly e-newsletter, a round-up of the most interesting and pertinent industry news and developments.
  • Whitepapers, eBooks and information from trusted third parties.
Join For Free