Francis Crick Institute and GSK to pioneer reactive fragment screening

Researchers at the Francis Crick Institute and GSK are extending their collaboration to advance the discovery of new drug targets in a £11.5 million effort. This comes after receiving a ‘Prosperity Partnership’ grant from the Engineering and Physical Sciences Research Council (EPSRC) and matching funds from GSK.

Together, the teams will develop and industrialise emerging technology in chemical biology based upon ‘reactive fragment’ screening.

Recent advances in genetics and genomics have helped researchers understand how subtle genetic variations can drive the onset and development of disease – genetically validated targets are at least twice as likely to become registered medicines.

Typically, researchers start their efforts by identifying specific protein targets implicated in disease and then conduct recurrent screening of millions of chemical compounds against purified samples of these proteins. It then takes many months to identify the most promising compounds to take forward into drug development. Reactive fragment screening has the potential to simultaneously identify drug targets and prototype molecules, which can control target function in cells.

The technology is based on the use of ‘fragments’, essentially stripped-down versions of drug molecules, which in this application can be screened rapidly and directly in human cells. Then, a highly sensitive analysis using mass-spectrometry based ‘chemoproteomics’ is used to build a map of the specific interacting proteins, which are captured by each fragment molecule in a disease-relevant context.

This technology could enable protein targets to be advanced into full drug discovery at a faster pace and with higher levels of confidence than previously possible.

Simon Boulton, Group Leader and project lead at the Crick, said: “By adopting advanced computational techniques, we can combine our genetic and chemical understanding of disease-causing proteins, to accelerate the development of new treatments. We already have plans in place to work with diverse groups from across the institute to employ this technology in a variety of disease settings, from identifying fragments that cause loss of viability in cancer cells, to exploring significant targetable proteins in malaria infection.”

Tony Wood, Senior Vice President of Medicinal Science & Technology at GSK, said: “Industrialising this technology expands our work with the Crick and directly supports GSK’s R&D ambition to improve industry success rates by developing more genetically validated targets. Together we will integrate cutting-edge functional genomics and machine learning technologies with next generation chemistry to identify novel targets and help more patients.”

Veronique Birault, Director of Translation at the Crick, said: “Reactive fragment screening has the potential to revolutionise the discovery of new treatments and we are grateful to EPSRC and GSK for taking this pioneering step with us.”

Suggested Reading

Join FREE today and become a member
of Drug Discovery World

Membership includes:

  • Full access to the website including free and gated premium content in news, articles, business, regulatory, cancer research, intelligence and more.
  • Unlimited App access: current and archived digital issues of DDW magazine with search functionality, special in App only content and links to the latest industry news and information.
  • Weekly e-newsletter, a round-up of the most interesting and pertinent industry news and developments.
  • Whitepapers, eBooks and information from trusted third parties.
Join For Free