RESULTS FOR : 'Biomarkers'
Showing 1 to 13 of 13 results |    
Keyword Search
Show#
Show#
Results Category/Section
The use of syngeneic models for the discovery of targets for combination therapy and predictive biomarkers of immunotherapy efficacy.

Optimal treatment for any disease is one that can cure or prevent spreading with minimal impact on the patient’s quality of life. In the case of cancer, therapeutic agents were initially designed to kill rapidly dividing cells.

Automating the drive towards Personalised Medicine.

Interest in personalised medicine continues to grow, and epigenetic biomarkers are very informative in this respect, giving a clear indication of whether – and how – a patient’s gene expression profile has changed, as well as the rate of disease progression.

Could the keys to precision and personalised medicine be rooted in predictive safety and research methods?

To meet the massive challenges of future healthcare, perhaps no two facets hold greater promise than biomarkers for precision medicine and systems biology for personalised patient care.

Biomarker discovery: the need for new generation peptideprotein microarrays.

The progression from health to disease is marked by significant biological changes within an individual1. Clinically presenting symptoms, however, can be non-specific and variable enough to hinder diagnosis, and may appear only after a disease has already become well-established and consequently more difficult to treat.

Collaborative research leads to new understanding of Biomarkers.

A new collaborative research paper sheds light on the way antibodies distinguish between different but closely related ‘biomarkers’ – in this case protein fragments which reveal information about the condition of the human body. This new understanding could enable pharmaceutical companies to develop new technologies for quickly diagnosing and treating fatal diseases.

The Sooner the Better: Utilising biomarkers to eliminate drug candidates with cardiotoxicity in preclinical development.

The rapidly escalating costs of drug development is causing the biopharmaceutical industry to focus its R&D efforts on identifying new technologies and methods that can predict the safety and efficacy of new compounds as early as possible in the drug development process. Today, only one in 11 compounds advance from first-in-man studies to regulatory approval and these late-stage failures mainly caused by safety issues exact a heavy toll on the biopharmaceutical industry as the cost of clinical trials is extremely expensive, legal liability is of concern and companies are under great scrutiny by investors

Using autoantibody biomarker panels for improved disease diagnosis.

In a new whitepaper, experts at Oxford Gene Technology (OGT) discuss the issues surrounding the detection and utilisation of novel biomarkers for disease diagnosis.

Business strategy for implementation of biomarkers in drug development

With pharmacoproteomic biomarkers being the subject of focus among regulatory agencies as well as research institutions, many pharmaceutical companies are increasing their interest and investment in biomarker strategies. This article discusses the potential for new efficiencies and cost savings that can be achieved from the utilisation of biomarkers at different stages along the drug development pathway.

EXPERIMENTAL MEDICINE developing biomarkers in early discovery to bridge preclinical and clinical development. Winter 04

In todays pharmaceutical research and development environment a major problem is the transition of too many drugs to later stages of development with insufficient and/or inadequate information (eg efficacy, dosing), resulting in high attrition and consumption of resources. One solution to this dilemma is to introduce and implement Translational Research Plans with state-of-the-art tools and methodologies to bridge Preclinical Discovery and Clinical Development in early Phases (I and IIa) to improve success in Phases IIb and III.

Overview of biomarkers in disease, drug discovery and development.

The pharmaceutical industry and the healthcare sector are both confronted with expensive technological innovation, escalating costs and pointed questions about productivity and efficiency.The parallels between the problems of producing new therapeutic agents and treating patients afflicted with poorly understood diseases are compelling.

The search for validated biomarkers in the face of biosystems complexity.

As the pharmaceutical industry is all too well aware, the genomics and postgenomic sciences have delivered an excessive number of drug targets few of which have been well validated. Indeed, apart from a few rare exceptions, genomics and many millions of dollars in expenditure have yet to greatly impact drug development.

Biomarkers make their mark on current research and drug development trends.

Biomarkers continue to become increasingly relevant in research and healthcare applications, as evidenced by the global market for products involved in their identification, validation, and use estimated at $8.3 billion in 2007 and projected to increase to $15 billion in 20101. The accelerating pace of activity in this area is further underlined by a cursory review of the publication space, where the number of relevant scientific articles generated annually has doubled from 20,000 to 40,000 over the past decade (Figure 1).

Ultra-sensitive measurement of protein and nucleic acid biomarkers may enable earlier disease detection and more effective therapies : Winter 06

The pharmaceutical industry is striving to develop effective new therapies for diseases, ranging from cancers to cardiovascular and neurodegenerative disorders to a host of metabolic, infectious and genetic conditions, and is placing emphasis on treatments related to the early detection of disease.