Minimising ‘attrition’ is one of the most important aims of a drug discovery and development programme, and the application of novel technologies that increase the probability of making the right choice early saves resources, and promotes safety, efficacy and profitability in the pharmaceutical industry. Metabonomics1-5 is a metabolic systems approach that is complementary to genomics and proteomics, which allows the characterisation of metabolic disease processes, genetic modifications and drug toxicity. In particular, metabonomics is focused on the study of altered whole organism metabolic control and homeostasis in complex systems where there are many interacting cell types performing different biochemical functions at the same time. Because of the integrative nature of the approach, metabonomics can add significant value to conventionally derived information on drug utility at several stages in the discovery and development process where complex system function needs to be understood1,2. Studying the effects of drugs on whole organisms by metabonomics, relies on multiparametric measurement of alterations in metabolism to a stressor or intervention. This and related metabolomic approaches can also be readily adapted to investigate the functional consequences of genetic modification6-8, which is potentially of great importance in the creation and validation of new models of human disease and efficacy. Thus, there is considerable scope for the application of metabonomic approaches within the pharmaceutical industry from discovery through clinical development and beyond specifically in the following areas:

Potential discovery applications
- Early \textit{in vivo} toxicological testing and screening based on mechanisms.
- Lead compound selection and pre-lead prioritisation.
- \textit{In vivo} efficacy screening in animal models.

Potential development applications
- Discovery of novel preclinical safety biomarkers and mechanisms.
Figure 1
Relationships under study in the systems biology of complex organisms; only by integrating many levels of measurement can the relationships between gene complement and disease processes and their treatment be understood.

Figure 2
Relationships between real world inputs (stressors) and outputs and their time displaced connections with the measured “omics responses”. We seek to understand the connections between inputs and stressors and the outputs in terms of disease via making omics measurements, but modelling these interactions is complicated by the time and space displacement of the events. Also in the real world dose-response relationships are not mimicked by the non-linear relationships between variations at one omics level to another.
Drug Discovery World Summer 2004

Continued on page 27

References
lesions such as phospholipidosis11,12. Many such windows exist in NMR spectra of biofluids and diagnostic information on hundreds of different types of disease or toxic processes (only a few of the known possibilities are shown) can potentially be derived from one measurement3.

While toxins may affect gene regulation or expression directly, significant responses may be completely unrelated to gene switching. In the latter case, genomic and proteomic methods are likely to be ineffective. However, all drug-induced effects involve disturbed endogenous metabolite concentration ratios, resulting from direct chemical reaction, altered binding to macromolecules, modified control mechanisms and induction or inhibition of enzymes. If these disturbances overwhelm compensatory or adaptive mechanisms, consequences recognised as toxicity occur. As metabolite concentrations in several key body fluids relate to cell and tissue processes, so are toxin- or disease-induced disequilibria reflected in those fluids. Using the pattern recognition approach, the NMR spectra can be used for:

- Classification of the sample as normal or abnormal (this is a useful tool in the control of spectrometer automation using sequential flow injection NMR spectroscopy).
- Classification of target organ toxicity and site of action within the organ. In certain cases, mechanism of toxic action may also be classified at this level.
- Identification of biomarkers of toxic effect of a compound.
- Evaluation of the time-course of effect, e.g., the evolution of the onset of toxicity and recovery.

The information derived from databases of NMR spectra can be maximised by use of appropriate chemometric and multivariate analytical strategies3. Preliminary analysis involves the application of unsupervised pattern recognition methods such as Principal Components Analysis (PCA) or cluster algorithms that assume no prior knowledge of sample class (Figure 3). Information relating to biomarkers of toxicity or recovery can be extracted from the analysis with a view to furthering the understanding of the mechanisms of toxicity and this has been well demonstrated with respect to failed drugs that have unusual mechanisms of toxicity13.

In August 2000 a major metabonomic toxicology project was commenced involving Imperial College and five drug companies (Pfizer, Hoffman La Roche, Lilley, Novo Nordisk and Bristol Myers Squibb): The Consortium on Metabonomic Toxicology14. The COMET project will not terminate until 2005 and by this time the time-related metabolic effects of 147 compounds will have been studied in low and high dose conditions in rats and in some cases mice in order to generate novel metabolic biomarkers of drug toxicity and to enable the construction of expert systems for toxicological screening based on urine analysis. So far the results have been encouraging with the development of new methods for comparing toxicological similarities of unknowns to the large metabolic database and a high degree of success in determining the classification of toxicity of unknowns and test sets15. A major publication on the effectiveness of this approach as a screening tool is currently being prepared.

Metabonomics as a functional genomic tool

Metabonomics can be used to separate classes of experimental animals such as mice and rats according to their strain based on the endogenous metabolite patterns in their biofluids2,5,6. This is due to the fact that differences in ‘silent-gene’ function between strains can influence the fluxes of metabolites through many key intermediary pathways resulting in distinct animal
‘metabotypes’⁶. Such differences may help explain differential toxicity of drugs between strains where the metabolic fate and hence potential toxicity of the drug itself is linked to the activity of endogenous pathways. There is also a strong indication for the use of metabonomics in the phenotyping of mutant or transgenic animals and the investigation of the consequences of transgenesis. In a recent study we have shown that the transfection process itself can cause significant metabolic differences in hepatoma cell lines due to cell membrane disruption in the host cell¹⁶. It is important to differentiate such ‘unwitting’ consequences of the genetic engineering process from the ‘witting’ or intended result, as these can potentially confuse the interpretation of the function of particular genes or gene classes when the cell system or organism is examined for the physical effects of the intervention. This is potentially important to pharmaceutical companies trying to genetically-engineer new animal models of disease using biochemically-invasive transfection procedures. Furthermore, metabonomic approaches can give deep insight into the metabolic similarities or differences between mutant or K/O animals and the human disease processes that they are actually intended to simulate. If the veracity of an animal model can be established using metabolic criteria, ie biomarkers of the disease process, then it may also be possible to monitor the efficacy of novel therapeutic agents (normalisation of the biochemical profile) using metabonomic criteria. Such approaches may be of great future value to the pharmaceutical industry in the quest for the discovery of safe and efficacious new drugs.

Clinical metabonomics

In the clinic, metabonomics also offers promising new diagnostics and biomarker generation capabilities. For instance, it has been shown that unique combination markers of atherosclerosis can be discovered using combined spectroscopic and multivariate statistical analysis⁴ and that it is possible to determine the level of atherosclerotic damage (Figure 4) using minimally invasive blood
plasma analysis in patients as measured against ‘gold standard’ techniques such as angiography (itself a highly costly and potentially dangerous procedure). Such studies are not only valuable in the clinic as potentially important diagnostic aids, but also as a means for uncovering novel biomarkers that could be used for either quantitatively monitoring therapeutic efficacy of novel compounds. Also such models can generate new criteria with which to assess the metabolic similarities between human conditions and the animal models that are created to mimic them in pharmaceutical discovery and development studies. Overall, metabonomics offers one of the most complete solutions to tackling problems surrounding pharmaceutical attrition as it allows minimally invasive repeat studies in man and animals and the potential for translatability of data and models between species in a way not currently offered by genomics or proteomics.

Furthermore, metabolic end-points are in the ‘real world’ and thus more readily related to clinical biochemical or pathological end-points than most other omics technologies. As such, metabonomics and related techniques are now being widely embraced by the big pharma and the US FDA and EPA (both of whom have set up internal metabonomics facilities in the last two years) as the next step forward in the battle of understanding complex system failure due to xenobiotic exposure or disease processes.

Professor Jeremy Nicholson is Head of Biological Chemistry at Imperial College where he has pioneered the use of advanced spectroscopic and pattern recognition methods for metabolic profiling for more than 20 years. The author of more than 400 scientific papers, he leads an internationally renowned research team working on metabolic disease mechanisms. His work has been recognised by many awards including The Royal Society of Chemistry Silver Medal for Analytical Chemistry (1992) and Gold Medal for Analytical Science (1997), The Chromatographic Society Jubilee Silver Medal (1994), The Pfizer Academic Prize for Chemical and Medicinal Technologies (2002) and the Royal Society of Chemistry Medal for Chemical Biology (2003). Professor Nicholson is a Fellow of the Royal Society of Chemistry, The Institute of Biology and The Royal College of Pathologists.